
A Graph Search Heuristic for Shortest Distance Paths

Edmond Chow
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Box 808, L-560, Livermore, CA 94551, USA
echow@llnl.gov

Abstract

This paper presents a heuristic for guiding A* search for find-
ing the shortest distance path between two vertices in a con-
nected, undirected, and explicitly stored graph. The heuristic
requires a small amount of data to be stored at each vertex.
The heuristic has application to quickly detecting relation-
ships between two vertices in a large information or knowl-
edge network. We compare the performance of this heuristic
with breadth-first search on graphs with various topological
properties. The results show that one or more orders of mag-
nitude improvement in the number of vertices expanded is
possible for large graphs, including Poisson random graphs.

Introduction
Background and motivation.
The structure of the interconnections among a set of entities
is increasingly being recognized as important data which can
be used to infer latent information about the entities them-
selves or about the network as a whole. Examples of these
network or graph structures include the World-Wide Web,
the Internet, and social networks. Structures called bipartite
cores mined from the Web, for example, can identify a set of
web sites that form a knowledge base on a common subject
(Kumaret al. 1999); see also (Kuramochi & Karypis 2002;
Abello, Resende, & Sudarsky 2002). The now well-known
PageRank (Brin & Page 1998) and HITS (Kleinberg 1999)
algorithms use network structure to determine which web
pages are more important than others in a specific sense. For
networks of heterogeneous data, sometimes calledrelational
data graphs, a query on the data may be posed as a subgraph
search problem, with the query expressed in the form of a
subgraph (Coffman, Greenblatt, & Marcus 2004). Acon-
nection subgraphis a connected subgraph that consists of a
set of “interesting” paths between two non-adjacent vertices
(Faloutsos, McCurley, & Tomkins 2004). For a social net-
work, a connection subgraph between two individuals rep-
resents how they are related.

This paper addresses the problem of finding relationships
between two vertices in an explicitly defined graph, which
may be a knowledge or information network. Given an undi-
rected graph and two vertices, we consider the problem of
finding a path between the given vertices with the smallest
number of edges. We call such a path ashortest distance

pathand also call the number of edges in this path thedis-
tancebetween the two vertices. A simple variant is to find
all edges on all the shortest distance paths between two ver-
tices. This set of edges may be used, for instance, as a start-
ing point for a connection subgraph calculation.

We note that although “interesting” paths tend to be short-
est distance paths, this is not always the case. In particu-
lar, paths through hubs, or highly connected vertices, often
do not give insightful information (Faloutsos, McCurley, &
Tomkins 2004). It is not difficult in this case, however, to
constrain the path search to avoid certain vertices or edges.

The straight-forward approach for solving a shortest dis-
tance path problem is to use breadth-first search (BFS) start-
ing at one of the vertices, or bi-directional search starting at
both vertices simultaneously. However, for almost all real-
world data of interest, the graphs have thesmall-worldprop-
erty (Watts & Strogatz 1998), that is, they have small aver-
age distance between a pair of vertices, commonly called
smallaverage path length. Thus, a breadth-first search will
cover a large portion of the entire graph after a small number
of steps, and is very costly for very large graphs. (Search-
ing graphs with large average path length is not considered
costly since searches are stopped after a given threshold dis-
tance; it is assumed no interesting relationship exists be-
tween vertices that are far apart.)

This paper advocates the use of heuristic search to guide
and accelerate path search. We present a heuristic for short-
est distance paths that does not need any information except
the structure of the graph itself. The heuristic is constructed
as a preprocessing step, and this cost is amortized in the
usual case that many searches on the same graph are per-
formed. The method is useful when the graph is very large
and unguided search procedures are too costly.

Many graph search algorithms utilize specific information
about the graph to be efficient. For example, in shortest
path search in transportation networks, the coordinates of
the vertices are utilized (Schulz, Wagner, & Weihe 2000).
Many networks are hierarchical, and finding a short path
between two vertices using this hierarchy can be very ef-
ficient. In particular, sending a message from one com-
puter to another on the Internet uses the Internet’s hierar-
chical structure. Algorithms have also been designed for
searching peer-to-peer networks that utilize the power-law
property of these networks, a property that implies the ex-

istence of highly-connected nodes (Adamicet al. 2001;
Simsek & Jensen 2005). In contrast to the above, the heuris-
tic presented here does not depend on any specific properties
of the graph.

Our heuristic is inspired by the small-world experiment
(Milgram 1967; Travers & Milgram 1969). In this experi-
ment, participants were asked to send a letter to an unfamil-
iar stockbroker in Boston by forwarding the letter to an ac-
quaintance who might know the target or be able to send the
letter to someone else who knows the target. The surprising
result at that time was that the target was reached via a short
chain of people. Recently, however, researchers have fo-
cused on the problem ofhow these short chains were found
(the reverse small-world experiment), and what properties of
the network allow these short chains to be found (Kleinberg
2000a; Watts, Dodds, & Newman 2002; Kleinberg 2000b;
2001; Huberman & Adamic 2004). Naturally, people used
information about the similarity of their acquaintances to the
target to decide how to forward the letter. Using this type
of decentralized search, it was found that various network
properties will affect how readily short chains could be un-
covered.

In the absence of attribute information about the vertices
(such as occupation or location in the case of the small-
world experiment) and how vertices may be connected to
other vertices with similar attributes (a concept calledho-
mophily), we present a heuristic that constructs a proxy for
attribute information. In particular, the heuristic constructs
the distance of all vertices to a set of arbitrary “influential”
vertices, called centers. This will be described and tested in
the remainder of this paper.

This heuristic appears to have been originally proposed
for Internet routing in a manuscript that was never published
(Hotz 1994 draft). The heuristic, however, is described in
some subsequent publications by researchers interested in
predicting Internet network distance (Ng & Zhang 2002). In
this paper, we prove some simple properties for this heuris-
tic, and then demonstrate its performance on a variety of
graphs with a wide range of average path length. Results on
an Internet graph are also shown.

Heuristic search.
A* search is a well-known graph search algorithm that uti-
lizes a heuristic to guide its search (Hart, Nilsson, & Raphael
1968). With a heuristic that satisfies certain conditions, A*
search is guaranteed to find a path to the target vertex with
smallest path cost and does so optimally efficiently in a spe-
cific sense. In our case, the cost of a path between two ver-
tices is defined to be the distance between those two vertices.
To explain A* search briefly, at each step, the algorithm ex-
pands the vertexn from a list called OPEN that has the low-
est value of the function

f(n) = g(n) + h(n)

whereg(n) is the actual cost of reaching vertexn from the
start vertex, andh(n) is the estimated cost of reaching the
target vertex from vertexn. The functionh(n) is the heuris-
tic function. To expand a vertexn, the algorithm computes
f for all the neighbors ofn that have not been encountered

earlier. These neighbors are put on the OPEN list, andn is
removed from the OPEN list and put on the CLOSED list.
If the heuristic is not monotone (to be described later), then
it may be necessary also to recomputef for vertices on the
CLOSED list. For more precise details, see (Hart, Nilsson,
& Raphael 1968).

In summary, this paper describes a heuristich(n) for ar-
bitrary unweighted and undirected graphs that can be used
with A* search to find the shortest distance path between
two vertices. The heuristic requires a small amount of in-
formation to be stored at each vertex. Next, we present this
heuristic. Later in the paper we will show the performance
of this heuristic with respect to some general topological
properties.

Level-difference heuristic
Heuristic.
Given a vertexc, the level of a vertexn relative toc is the
distance betweenn andc, and is denoted bylc(n). The level
of every vertex in a connected graph relative toc can be
computed by a breadth-first algorithm starting atc. Here
a vertexc is called acenter, and the level of the center itself
is 0.

Given a centerc and a target vertext, a lower bound on
the distance between any vertexn andt is

hc(n) ≡ | lc(n)− lc(t) |
which can be used as a heuristic function. To improve this
heuristic, select a set of center verticesC, and define the new
heuristic

h(n) ≡ max
j∈C

{hj(n)} .

We refer to this heuristic as thelevel-difference, or LD
heuristic. This heuristic is better than any of the individual
hj(n) in the sense that A* search usingh(n) will never ex-
pand more vertices than using any subset of thehj(n). Note
that the value ofh(n) is generallynotequal tohj(n) for the
centerj closest to the target or for the centerj closest ton.

If it is inexpensive to determine whether or not a vertex
n is a target vertext, then we can define amodifiedlevel-
difference heuristic

h′(n) ≡
{

max {h(n), 1} , n 6= t
0, otherwise.

This modification may be useful if a very small number of
centers is used. We use this heuristic for the simulations later
in this paper.

Properties of the heuristic.
Property 1 The LD heuristic is admissible.

A heuristic isadmissiblewhen it never overestimates the ac-
tual distance to the target. A* using an admissible heuristic
is optimal and will return the shortest distance path.

Property 2 The LD heuristic ismonotone(also calledcon-
sistent), that is,

h(n) ≤ 1 + h(n′) ∀n
wheren′ is a neighbor ofn and the 1 implies unit edge costs.

Proof. First, we note that for a givenc, lc(n) and lc(n′)
cannot differ by more than unity and thushc(n) andhc(n′)
cannot differ by more than unity.

For somen, let c be the center used to estimateh(n) and
let d be the center used to estimateh(n′). The centersc and
d may be different or identical. Then,

hd(n′) ≥ hc(n′) ≥ hc(n)− 1
or in other words,

hc(n) ≤ 1 + hd(n′).
2

Monotonicity implies that once A* expands a vertex, it is
guaranteed to have found the shortest distance path to that
vertex. This somewhat simplifies A* search by not needing
to re-open CLOSED vertices.

Property 3 The error in the LD heuristic at a vertex of dis-
tancel from the target is bounded byl.

Proof. For a vertex that is distancel from the target, the
heuristic estimate can take on values from 0 tol. Thus, the
largest error that can be incurred isl. 2

The above property says that the heuristic is more accurate
closer to the target vertex. The bound is poor, but it says that
the heuristic cannot make A* perform worse than breadth-
first search.

Property 4 The error in the LD heuristic at a vertex of dis-
tancek from a center is bounded by2k.

Proof. Let lAB denote the length of the shortest path be-
tween verticesA andB, and leth denote the heuristic es-
timate of the distance betweenA andB. The error in the
heuristic estimate ise = lAB − h ≥ 0. If lAB ≤ 2k, then
e ≤ 2k as required. Thus it remains to consider the case
wherelAB > 2k.

Let A bek steps from a center vertexD. D may be the
center used in the heuristic estimate, or it may be a different
center. By definition,

lDA = k.

Since the shortest distance betweenA andB is lAB , we have

lDA + lDB ≥ lAB .

The above two statements imply that

lDB ≥ lAB − k. (1)

Along with lAB > 2k, we also have the implicationlDB ≥
lDA. Now, the difference in level numbers using centerD
must not be greater than the heuristic estimate,

lDB − lDA ≤ h = lAB − e

thus

e ≤ lAB − lDB + lDA

= lAB − lDB + k

≤ 2k

where the last inequality utilized (1). 2

It is not difficult to see that the bound of2k can be at-
tained. A corollary to the above property is that the error in
the heuristic value is bounded by2k, wherek is the maxi-
mum distance of any vertex to its nearest center vertex.

An inadmissible heuristic.
A related heuristic is the following. Given a centerc and a
target vertext, anupperbound on the distance between any
vertexn andt is

Hc(n) ≡ lc(n) + lc(t)

and if multiple centers are used, a heuristic can be defined as

H(n) ≡ min
j∈C

{Hj(n)} .

A weighted combination ofh andH has been suggested, but
is not recommended, according to (Ng & Zhang 2002). It is
easy to see thatH and thus the combined heuristic are in-
admissible. The heuristic also violates the condition that the
heuristic value for a target vertex is zero. This latter condi-
tion is used to prove that an inadmissible heuristic cannot be
monotone. (Interestingly,H would otherwise be monotone
in our case.) Empirically, we did not find that a combined
heuristic was more effective than the LD heuristic by itself.

Selecting the centers.
The center vertices should be chosen to minimize the er-
ror in the heuristic function. This may be accomplished ap-
proximately by choosing the center vertices to minimize the
averagedistance of all vertices to their nearest centers. In
practice, it may be easier to minimize themaximumdistance.
Other options are described in (Ng & Zhang 2002), although
for a different application. Different algorithms are suitable
for graphs with different properties. For the tests performed
in this paper, the centers were selected randomly. We note
that if it is known that certain vertices are repeatedly used as
targets, then these target vertices should be selected as center
vertices.

Empirical tests
In this section, we empirically test A* with the LD heuristic
and compare its performance with BFS in terms of number
of vertices visited. We wish to understand the performance
of the LD heuristic with respect to the type of the graph, its
size, and its average degree. For this reason, we test model
graphs that were generated with specific properties. We also
test one sample graph (a small portion of the Internet) and
show results for this graph that are qualitatively similar to
the results of one of the model graphs.

We consider three classes of graphs: Poisson random
graphs, spatial graphs, and meshes. These three classes
cover the wide range of very disordered graphs with small
diameter (Poisson random graphs) and very structured
graphs with large diameter (meshes).Small-worldnetworks
(Watts & Strogatz 1998) parameterize between these two ex-
tremes, and we consider the example of spatial graphs in this
case. All the graphs we consider are undirected.

In a Poisson random graph, the probability of an edge be-
tween any two vertices is constant (Bollobás 2001). We gen-
erated random graphs with 64,000 and 128,000 vertices and
with average degree 2 or 6. We then extracted the largest
connected components of each graph. Table 1 shows the de-
tails of the largest connected components of three random
graphs that we used in the following tests.

In spatial graphs, vertices are associated with geometric
coordinates. The probability of an edge between two ver-
tices in a spatial graph depends on the distance between
those vertices. For our spatial graphs, we select 2-D co-
ordinates for each vertex randomly, and set the probability
of an edge between verticesi and j to be proportional to
d(i, j)−α whered(i, j) is the Euclidean distance (computed
with periodic boundary conditions) between verticesi and
j, andα ≥ 0 is a parameter that controls the diameter and
clustering in the graph. Forα = 0, we have Poisson ran-
dom graphs, and for largeα, we have mesh-like graphs that
have large diameter and a high measure of clustering called
clustering coefficient(Watts & Strogatz 1998). In practice,
however, graphs defined exactly this way are costly to gener-
ate. We used the following approximate algorithm. For each
vertex in order, we link it tom other vertices with probabil-
ity proportional tod(i, j)−α (same as above). The parameter
m controls the average degree of the graph. For our test, we
used a graph withα = 4, which is large enough to show sig-
nificant differences from both Poisson random graphs and
meshes. The average degree of this graph was set to 6.

We generated a 2-D mesh graph by using a triangular
mesh generator over a circle (approximated by a polygon).
Table 1 shows the details for this graph.

For our realistic graph we use a small sample of the In-
ternet obtained from traceroutes collected by the Internet
Mapping project at Lucent Bell Laboratories circa Novem-
ber 1999. The network has 112969 routers and 181639 links
between them. This real-world network has moderate clus-
tering coefficient and a scale-free degree distribution (Albert
& Barab́asi 2002). We will show that with respect to graph
search, this network is qualitatively similar to a spatial net-
work.

ave ave path
vertices edges degree length diam

Random 63848 191999 6.0 6.4 12
Random 51065 61415 2.4 15.0 39
Random 127664 383997 6.0 6.8 12
Spatial 64000 192000 6.0 21.3 39
2-D Mesh 64304 192043 6.0 116.4 278
Internet 112969 181639 3.2 9.9 27

Table 1: Test graphs, listing the number of vertices, number
of edges, average degree, average path length, and diameter.
The latter two were computed by sampling the result of 1000
breadth-first expansions.

Figures 1–4 show results for 4 different graphs. The fig-
ures plot the number of vertices visited by BFS and by A* as
a function of the distance between a pair of source and target
vertices. Distances of 1 to at most the average path length
were used. (Larger distances have results significantly af-
fected by the finite size of the graphs.) For each graph, 10
trials were used. In each trial, the centers were selected ran-
domly, and 10 pairs of vertices were randomly selected as
the sources and targets for each given distance. Each figure
plots the average for each given distance over all trials. This
data may be used to compute the effective branching fac-

tors, but we believe the results presented this way are more
informative.

In Figure 1, the results are shown for a Poisson random
graph with 63,848 vertices and average degree 6. The results
show that A* performs significantly better than BFS, even
with 1 center. Using additional centers further improves
the results but give diminishing returns. (The downward
curve of the plot for BFS is attributed to the finite size of
the graph.) By comparing the slopes of the plots, the com-
plexity of A* appears smaller than the complexity of BFS
for small distances, but appear to be the same for large dis-
tances. Thus in the initial stages of the search, the branching
factors for A* are much lower than the branching factors for
BFS, but then increases as the search progresses.

In Figure 2, the results are shown for the spatial graph.
Again, A* gives a significant improvement, even for 1 cen-
ter. Compared to random graphs, in this class of graphs, the
complexity of both BFS and A* decreases as the search pro-
gresses. Also, the complexity of A* is better than the com-
plexity of BFS and improves when more centers are used.
The random graph of Figure 1 and the spatial graph have
similar numbers of vertices and edges, but the average path
length for the spatial graph is larger than that for the random
graph. For a search of distance 6, much fewer vertices are
visited when searching spatial graphs compared to searching
random graphs.

Figure 3 shows comparable results for a 2-D mesh. The
results are qualitatively similar to the results for the spatial
graph of Figure 2 (which has a relatively high value ofα).
An exception is that for the mesh graph, the diminishing re-
turns when using more centers is more dramatic: the results
are very similar whether using 16 or 64 centers. Also, for the
same search distance, fewer vertices are visited compared to
spatial graphs.

Figure 4 shows results for a small portion of an Internet
graph. The results are very similar to the results for the spa-
tial network. The diminishing returns for adding centers is
more similar to that of the spatial network than that of the
mesh. In terms of graph search, it appears possible to model
the Internet graph as a spatial network. Although we did not
attempt this, it may be possible to determine an equivalent
value ofα for the Internet graph.

In Figure 5, we wish to understand the scaling behavior
of the LD heuristic, that is, how it behaves for large graphs.
Figure 5 plots the results for two random graphs, with ap-
proximately 64,000 vertices and 128,000 vertices and ap-
proximately the same average degree. The figure shows that
for both BFS and heuristic search with 4 centers the results
are changed very little for the larger graph. This implies that
much larger graphs may be searched with nearly the same
performance.

In Figure 6, we wish to understand the effect of average
degree on the behavior of graph search. We tested random
graphs with average degree 6 and average degree 2.4. For
larger average degree, the effective branching factors are
larger. The improvement of A* over BFS appears compa-
rable in both cases, but appears slightly greater for lower
average degree.

Figure 1: Test results for a random graph with 63,848 ver-
tices and average degree 6.

Figure 2: Test results for a spatial graph withα = 4, 64,000
vertices and average degree 6.

Figure 3: Test results for a 2-D mesh with 64,304 vertices
and average degree 6.

Figure 4: Test results for a portion of the Internet graph with
112,969 vertices and average degree 3.

Figure 5: Test results for two random graphs, with approxi-
mately 64,000 and 128,000 vertices and average degree 6.

Figure 6: Test results for two random graphs with differing
average degree.

Conclusions and future work
In this paper, we presented a heuristic search procedure for
finding the shortest distance path between two vertices in a
connected, undirected graph. The method is useful when the
graph is very large and unguided search procedures are too
costly. Compared to breadth-first search, orders of magni-
tude improvement in the number of vertices expanded are
possible, using only a small amount of storage at each ver-
tex. We empirically demonstrated these results for different
classes of graphs. For a given distance between source and
target vertices, graphs with larger diameter and higher clus-
tering coefficient are less costly to search.

We observed that a significant reduction in the number of
vertices visited can be achieved with heuristic search with
even 1 center vertex. Additional center vertices give dimin-
ishing returns, but may be worthwhile if the cost of expand-
ing vertices is high, e.g., in the case of distributed parallel
search. The performance of the heuristic appears insensitive
to graph size for random graphs and a fixed number of cen-
ters. We also observed that, for graph search, the Internet
graph appears similar to a spatial graph with largeα.

This work opens a number of unanswered questions. Var-
ious methods can be devised for selecting the center ver-
tices, and it is anticipated that different methods are suitable
for random graphs and for graphs with power-law degree
distributions, for example. Also, in this paper, we did not
try to correlate the performance of heuristic search with any
measure of the error in the heuristic. Again, we anticipate
that these correlations will be very dependent on topological
properties of the graphs.

Acknowledgments
The author wishes to thank Lada Adamic for referring us to
(Ng & Zhang 2002), as well as Tina Eliassi-Rad, David Epp-
stein, and Keith Henderson for helpful comments. This work
was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

References
Abello, J.; Resende, M. G. C.; and Sudarsky, S. 2002. Mas-
sive quasi-clique detection. In Rajsbaum, S., ed.,LATIN
2002: Theoretical Informatics, 598–612. Springer-Verlag.
Adamic, L. A.; Lukose, R. M.; Puniyani, A. R.; and Huber-
man, B. A. 2001. Search in power-law networks.Physical
Review E64.
Albert, R., and Barab́asi, A.-L. 2002. Statistical mechanics
of complex networks.Rev. Mod. Phys.74:47–97.
Bollobás, B. 2001.Random Graphs. Cambridge: Cam-
bridge University Press, 2nd edition.
Brin, S., and Page, L. 1998. The anatomy of a large-
scale hypertextual (web) search engine. InProc. 7th Inter-
national World Wide Web Conference (WWW7)/Computer
Networks, volume 30, 107–117.
Coffman, T.; Greenblatt, S.; and Marcus, S. 2004. Graph-
based technologies for intelligence analysis.Comm. ACM
47:45–47.

Faloutsos, C.; McCurley, K.; and Tomkins, A. 2004. Fast
discovery of connection subgraphs. InProceedings of the
10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 118–127. Seattle, WA,
USA: ACM Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basic for the heuristic determination of minimum cost
paths. IEEE Trans. Systems Sci. and Cybernetics4:100–
107.
Hotz, S. M. 1994 (draft).Routing information organiza-
tion to support scalable interdomain routing with hetero-
geneous path requirements. Ph.D. Dissertation, University
of Southern California.
Huberman, B. A., and Adamic, L. A. 2004. Informa-
tion dynamics in the networked world. In Ben-Naim, E.;
Frauenfelder, H.; and Toroczkai, Z., eds.,Complex Net-
works, 371–398. Springer.
Kleinberg, J. M. 1999. Authoritative sources in a hyper-
linked environment.Journal of the ACM46(5):604–632.
Kleinberg, J. 2000a. Navigation in a small world.Nature
406:845.
Kleinberg, J. 2000b. The small-world phenomenon: An al-
gorithmic perspective. In32nd ACM Symposium on Theory
of Computing. ACM.
Kleinberg, J. 2001. Small-world phenomena and the dy-
namics of information. InAdvances in Neural Information
Processing Systems (NIPS) 14. MIT Press.
Kumar, R.; Raghavan, P.; Rajagopalan, S.; and Tomkins,
A. 1999. Extracting large-scale knowledge bases from the
web. InThe VLDB Journal, 639–650.
Kuramochi, M., and Karypis, G. 2002. An efficient algo-
rithm for discovering frequent subgraphs. Technical Report
UMSI 02-026, Department of Computer Science, Univer-
sity of Minnesota.
Milgram, S. 1967. The small world problem.Psychology
Today2:60–67.
Ng, T. S. E., and Zhang, H. 2002. Predicting internet net-
work distance with coordinates-based approaches. InIN-
FOCOM’02.
Schulz, F.; Wagner, D.; and Weihe, K. 2000. Dijkstra’s
algorithm on-line: An emperical case study from public
railroad transport.ACM J. Exp. Algorithmics5.
Simsek, O., and Jensen, D. 2005. Decentralized search in
networks using homophily and degree disparity. InPro-
ceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05).
Travers, J., and Milgram, S. 1969. An experimental study
of the small world problem.Sociometry32:425–443.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of small-world networks.Nature393:440–442.
Watts, D. J.; Dodds, P. S.; and Newman, M. E. J. 2002.
Identity and search in social networks.Science296:1302–
1305.

